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Abstnct-This paper specializes to a semi-infinite tube Horgan's (fnt. J. Solids Structurl!s 10, 837
852. 1974) two-stress-function formulation of the equations for the axisymmetric deformation of a
linearly elastic transversely isotropic cylindrical body free of surface tractions. The ratio of the
tube's shear modulus to its radial (transverse) extensional modulus is taken to be of the order of
magnitude of the square root of its thickness to its mean radius. The equations are solved by formal
asymptotic expansion in (fractional) powers of the thickness to radius ratio for four canonical sets
ofend conditions: (A) axisymmetric equilibrated tractions; (B) and (C). two different combinations
of tractions and displacements; and (D) axisymmetric radial and axial displacements. The solutions
exhibit interior (i.e. shell-like) parts and wide and narrow boundary (or edge) layers. the latter
containing components that vary extremely rapidly through the thickness of the tube. The analysis
focuses on computing the lowest-order correction. both in the interior and in the boundary layers.
to classical shell theory. ft is shown that in cases (A)-(C) the interior corr~'Ction to classical
shell theory-that is. those elfects so-called higher-order shell theories allempt to capture-can
(ultimately) be determined directly, in terms of the edge data, but that in case of prescribed
displacements (D). the computation of (three-dimensional) boundary-layer elTt.'Cts is essential. These
conclusions are consistent with those for elastically isotropic shells found by Gregory and Wan
(1992) who used ingenious arguments based on the Betti Reciprocity Principle.

I. INTRODUCTION

My aim is to substantiate the title of this paper by a formal asymptotic analysis of the exact
equations of linear elasticity for a semi-infinite, transversely isotropic lube (i.e. a circular
cylindrical shell) of inner radius R - H and outer radius R + H. I start from the formulation
of Horgan (1974) in which the stresses, a" au, a:, and t, and the radial and axial displace
ments, u, and U:' are expressed in terms of two functions, 4J and X, that satisfy two coupled,
second-order partial differential equations in the cylindrical coordinates rand z. The sides
of the tube, r = R±H, are traction free while the end, == 0, is subjected to one of four
sets of conditions [the classification is that of Gregory and Wan (1992)]:

(A) axisymmetric, self-equilibrating tractions

a:(r,O) = 11:(r), t(r,O) = i(r) ;

(B) axisymmetric self-equilibrated axial traction and radial displacement

a:(r,O) = 11:(r), u,(r, O) = u,(r);

(C) axisymmetric radial traction and axial displacement

(I)

(2)

tTo Lyell Sanders on his 65th birthday in appreciation of his friendship and in admiration of his profound
contributions to shell theory.
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t(r.O) = i(r), uAr,O) = u:(r) ; (3)

(0) axisymmetric displacements

(4)

where a hat () denotes a prescribed quantity. Any rigid body displacements are to be
suppressed so that, in each case, the stresses and displacements in the tube decay to zero
as =-. 00. As will be seen, each case is more complicated than its predecessor.

In a linearly elastic transversely isotropic tube undergoing axisymmetric deformation.
there are five elastic constants. These may be taken as the coefficients (or their reciprocals)
which appear when twice the strain-energy density is written as a quadratic function of the
stresses, as follows (Horgan, 1974):

(5)

By weak in shear I mean that jJIET = O[(HIR) 112]. With this characterization I shall show.
formally, that as HIR -. 0, the (unique) solution of the governing equations exhibits three
distinct boundary (or edge) layers: thc wcll-known shell layer of width O(H 1/2 R 1/2); a wide
layer of width O[(RIH) 1/4H) (i.c. widc relative to the tube's thickness) ; and a narrow layer
of width O[(HIR)I/4H]. These lattcr two boundary laycrs, analogous to the "widc" and
"narrow" boundary layers found by Horgan and Simmonds (1991) in a transversely
isotropic clastic strip wcak in shcar, givc rise to thc cnd effccts mcntioncd in thc title.
Moreover, the narrow laycr contains a sinuous part that oscillatcs rapidly through thc
thickncss of thc tube.

An analysis of the boundary conditions at the end of the tube in cases (A)-(D) leads
to the conclusion that ifdisplacements are prescribed at the end oj the tube [Case (D)] then
proper corrections to the classical shell equations due to transverse shear effects-a major
aim oj so-called higher-order shell theories-cannot be made without a consideration of
three-dimensional edge effects associated with the wide and narrow boundary layers.
Thus, higher-order shell theories based on refined thickness distributions of stress and
displacement in the interior of the shell cannot always be correct asymptotically, and in this
sense are inadequate. Higher-order shell theories are also unnecessary in that a first correction
to classical shell theory in the interior can be obtained by a simple iteration of the classical
shell solution, involving no more than the integration of polynomials through the thickness.
Determining the proper edge conditions for these iterated solutions requires. as I shall
show, an analysis of edge effects, although, in cases (A )-(C), edge conditions Jar the iterated
interior solutions can be expressed ultimately in terms oJ weighted integrals oj the edge data.
Gregory has suggested to me that a simpler (and more fundamental) way to obtain boundary
conditions for the interior (shell-like) solutions in cases (A)-(C) is to use the Betti Reci
procity Principle, as Gregory and Wan (1992) did for isotropic tubes. This intercsting
alternative remains to be examined.

The analysis herein could have becn developcd by first expressing the solutions of the
governing equations in tcrms of Bessel functions (Warrcn et al., 1967) and then using ideas
analogous to those of Gregory and Wan (1992) to decompose thc edge data into "shell
like" parts and residual "local self-equilibrating" parts. The algebraic details of such an
exact approach are tedious. In contrast, the presefll direct asymptotic solution of the
governing differential equations is immensely simpler. (At one point in their analysis of
isotropic tubes. Gregory and Wan have to take II terms in an expansion ofan cxact solution
to retain two non-zero terms in a later approximation.)

In Sections 3-6, where I develop asymptotic expansions for the intcrior. wide, narrow
and sinuous solutions, I carry the expansions only far enough to compute the first-order
correction to the classical shell solution (in the interior of the tube) and the lowest-order
approximations to the wide and narrow boundary-layer solutions.
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2. THE GOVERNING EQUATIONS

A = (ET/Ed-v~ and B = ET -I-v
I + Vn (I + vn).u
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(6)

by Horgan's (1974) auxiliary elastic constants and introduce dimensionless independent
and dependent variables by setting

r = R+Hp, == JiiR" (7,8)

where 0'0 is some reference stress chosen to make the dominant stresses O( I). Then, in terms
of the additional dimensionless parameters

H 21 I-v
s==R' K=-- ~---- I-v' - A ' (9)

eqns (3.17) and (3.18) of Horgan (1974) take the form

r.X,I' 1!2X - ---- +/:JX·· = -r. y(1 +r.p)<[) ",PIf I + el' .,.. ,11>

(10)

(II)

where a comma followed by a subscript denotes partial differentiation with respect to that
subscript. The terminology weak ill shear, defined following (5), means that}' =0(1).

The stresses and displacements follow from cqns (3.12)-(3.16) of Horgan (1974) and
from (7)-(9) above as

0', = <[) •• _ X,c +~ (12)
0'0 ... (I +ep)2 I +ep'

0'0 _ _ I X,c (l - v)<[).P
- = ve <[)p.. + (I )' +vn<[):?- I' (13)
0'0 ' r +ep • .... +ep

2firu:
H l!~R 1!~0'0 == u(p, (, e)

== I\«(,r.) +'P«(,e)p+e'!4U(p, (,e)

=J- I [e- I X,If - (1- Vn + vJ)(1 +ep)<D,d,

2firu,
-R2 == u'(p,(,e)

0'0

== .1«(,e)+eW(p,(,e)

=X,c - (I +ep)<D.p •

(16)

(17)
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The structure of the second lines of (16) and (17) emerges in the sections to follow from
the asymptotic analysis of the governing differential equations and boundary conditions; I\.
and .:1 are thickness-averaged axial and radial displacements and'll is a thickness-averaged
meridional rotation. To make the dimensionless residual axial and radial displacements, U
and W, unique, I require that

(18,19)

The traction-free conditions on the cylindrical faces of the tube follow from (7), (8),
and eqns (4.1) and (4.2) of Horgan (1974) as

(20,21)

The boundary conditions at ( = 0 for cases A-D discussed in the Introduction may be read
off from (14)-(17). As (- 00, <I> and X must approach zero. At the end of this section I
shall reformulate the boundary conditions at ( = 0 in terms of <1>, <1>." 1\., If'. U• .:1 and W.

Finally, note that the consert'ation property of the solution ¢ given by eqn (4.11) of
Horgan (1974), adapted to a tube and expressed in dimensionless variables. takes the form

This relation, (16), (18), and the boundary condition (21) imply that

21\.«(,e) = -vII (I +ep)<I>.c(p,(,e) dp.

(22)

(23)

Because I require the axial displacement to approach zero as ( - 00, it turns out that 1\.(0, e)
cannot be prescribed as part of a displacement boundary condition. Rather, in all cases, I\.
is to be determined by (23) or its equivalent.

In cases A-C (i.e. if (1: or t is prescribed at z = 0) I find it advantageous to work with
alternative forms of the traction boundary conditions obtained by integrating (14) once
and (15) twice with respect to p and using (20) and (22). Thus, with s(p, e) denoting the
prescribed value of s(p, 0, e), (14) and (20) imply that

where

<I>(p, 0, e) = <1>( - 1,0, e) + eS(p, e), (24)

S= e- I f, In [(I +ep)/(I +ep)]s(p, e) dP

= f, (p-p)so(ij)dp+e fl (p-P)[S4(p)-(1/2)(p+p)so(p)]dp+0(e 2
)

=So(p) +eS4(p) +0(e 2
). (25)

In arriving at the last line of (25), I have assumed-as I shall for all end data-that the
prescribed dimensionless axial traction, .r(p, e), has an expansion in integral powers of e.
This is sufficient for the thesis of this paper, but, of course, a more general expansion is
possible. On the other hand, as will be seen when the solutions of the various interior and
boundary-layer equations are appropriately added and matched to the end conditions of
the tube, all asymptotic expansions of solutions should proceed in powers of e14. The
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notation in the second and last lines of (2S}-i.e. the subscript 4-is consistent with such
expansions.

To express $( -1,0, e) in (24) in terms of s(p, e), multiply (14) evaluated at' = 0 by
(1 - VTT)(1+&p) 2

, integrate from - 1 to 1, and invoke (20) and (22) to obtain

(l-vn)fI (I +ep)2s(p,e)dp = 2(1-v".)

x {2sf1(1 +ep)$(p,O,e)dp-[(1 +ep)2$(p, 0, e»): I} = 2(1 +vn)[(l +ep)2$(p, 0, e»): I'

(26)

Then use (24) to write

~(p, 0, a)l: I = eo5(l, a)

and eliminate $(1, 0, a) between this expression and (26) to get

(27)

$( -1,0,&) == 4>(a)

= (l+e)2fl [In(I+&P)+ (l-vn) (1+&p)2JS( ,e)d . (28)
4a _ I I + e 2( I + vn) I + a p p

Using overall axial equilibrium,

fl s(p, a) dp = 0,
-I

and introducing the dimensionless stress couple at the edge,

I
It+H

(r- R)ra:(r) dr I

• R-H f A()d • • O( 2)m== H2R = PsP,& p==mO+am4+ e,
(10 -I

I obtain the expansion

(29)

(30)

• rno & { • I [ . Vn II 2' J} 2
¢l == 2(I+vn) + 2 mo+ I+vn m4- T _I P so(p)dp +O(e)

• • 2
== ¢lO+&~4+0(a ). (31)

Now consider the integrated form of the edge condition r(p,O) == i(r). Upon
integrating (15) from -I to p, I find that

where

¢l.,(p,O,a) = ¢l.,( -1,O,a)-&t(p,e),

t= IP i(p,e)dp
-I

= fl [io(p)+si4(p)+0(e2»)dp

== t o(p)+at4 (p)+0(&2).

(32)

(33)
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To express 4>,,( - I, 0, £) in (32) in terms of the dimensionless radial traction, i(p, 6),
multiply (IS) evaluated at' =0 by £(I-vTT)(1 +£p)2, integrate from -I to I, and invoke
(22) to obtain

t(I-VTT)f
1

(t +ep)2i(p, t) dp =(I-VTT)
-I

x {afI(l + tp)4>.::(p, O, t)dp-[(1 +£p)24>.;(p,O,t)]: I} = (I +vTT)[(1 +tp)24>,,(p, 0, t)]: I'
(34)

Then use (32) to write

(35)

and eliminate 4>.{(I, 0, t) between (34) and (35) to get

4>.,( -1,O,s) == ef>,(s)

= (1:S)2 fl [1+C~::)CI:£:Y}(P'S)dP' (36)

If s = 1 (a solid tube), this expression reduces to eqn (4.9) of Horgan (1974).
Introducing the dimensionless transverse shear stress resultant at the edge,

I obtain the expansion

<b, = 2(1 ~VTT) {4o+{(l +YTT)qO+q,,-vTTf I pio{p)dp]+0{S2)}

== <bo::+s<b",+0(S2). (38)

Inserting (32) into (23) and noting (33) and (38), I obtain

21\(0, e) = - (2<b,(e) -ef I (I +ep)t(p, e) dP]

== -1+vYTT {40+{4"+fl pio(P)dP]+0(S2)}. (39)

Using (14), (16) and (17) to introduce the notation

.1 == 4(0,s) = (1/2)fl w(p,e)dp == .10+8.1.. +0(£2)

en == eW(p,O.s)+(1 +ep)<t>.p(p,O,8)

= W(p,S)-a(e)+eJP s(p,s)dp
-I

== e[fio(p)+sO..(p)+O(e2
)].

(40)

(41)
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e. 114 0 = U(p,e.)-A(e.)-'P(e.)p

== e. 114 {Oo(p)+e04(p)+O(e. 2
)], (44)

and using (24), (32), and the first line of (39) in (50) below, I replace the boundary conditions
(1)-(4) by:

Case A:

Case B:

Case C:

~(p,0, e.) = <i>(e) + eS(p, e),

<f)(p, 0, e.) = <i>(e.) + e.S(p, e), X.,(p, 0, e) = ~(e.)+~(p,e);

(45,46)

(47,48)

X./I(p, 0, e) =e{15l'P(e.)p + el14 O(p, e)] + (I - vTT)(I + ep)[<i>,(e) - et(p, e)l

+V<5{p<i>,(e.)+(1/2)f 1 (I +e.p)t(p,e.)dp-(1 + e.p)t(p, e)]}; (50)

Case 0:

X.,(p,O,e)-(1 +ep)<f).p(p,O,e.) = ~(e.)+eW(p,e).

For use later, I note by (29), (30), (40), and the second line of (41) that

fl O(p, e.) dp = -';'(e).
-I

(52)

(53)

3. THE INTERIOR (SHELL-LIKE) EXPANSION

( first look for solutions to the differential equations (5) and (6) having asymptotic
expansions of the form

t There are no "hats" on the A5 because. as noted following eqn (23). 1\(0.6) cannot be prescribed if one
also requires that lim 11,('. z) - O. If~..(P. O. a) is prescribed. as in cases A and C-see (46) and (49)-then A(O. 6)

has an expansion'in"powers of a. However. if ~..(P. O. 6) is not prescribed. as in eases 8 and D. then it turns
out-see (I24)-that (23) implies that A(O, c) must have the expansion indicated.
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~ =F(p,C,e) =F(p,O+e l/'F<p,O+e Il2t<p,C)+""

X= G(p,C,e) = G(p,O+eI14G(p,e)+el/2(;(p,e)+"" (S4)

n n
such that derivatives of F and G with respect to p and Care 0(1). Substituting (S4) into
(10) and (11) and the traction-free conditions (20) and (21), and equating coefficients of
like power of e1/4, I obtain an infinite sequence of boundary-value problems free of e. It

k k
turns out that F = G = 0, k = 1, 3, S so that the first four non-trivial sets of equations are

o 0 0 0 0 0
F./lP= "G.p:;, G./l/l = 0, F.p(± 1,0 = 0, F.,(± 1,{) =G(± 1,0,

(5S)0, (56)0' (S7)0, (58)0

2 "t ., 0" .,.,

F.P/l = KG.p{, G.pl' = -'IF,I'" F,/l(± I,e) = 0, F,,(± 1,0 =G(± 1,0,

(55h, (56h, (57h, (S8h

4

F.p(± I,C) =0,
4 0 4
F.,(± l,O±2F.,(± 1,0 = G(± 1,0,

1. .; 0 2 .,

(i.PP = -'I(F.p+PF.pL+G.p-JG.",

(SSh,(56h

~p(± I,C) =0,

Solving (56)0 and then (55)0' I obtain

where Ao(C), etc. are unknown functions. Imposition of (S7)0 and (58)0 implies that
Bo = Do = 0, Aom = Co(C), but leaves Co undetermined. Thus,

G= Com. (61)0

As (55h-(58h differ in form from (55)0-(58)0 only in the right-hand side of (56)2
which is now seen to be zero, it follows that

(61h

where C2(0 is an unknown function.
Substituting (61)0 and (61h into (56), and integrating, I obtain

and substituting this expression along with (60)0 into (55)4 and integrating, I obtain

Here, Cl;'I(O == dnCo(O/dCn, n ~ 3, and A 4(C) etc. are unknown functions. The boundary
condition (57)4 implies that
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B. =b.+(I-vTT)Co(O, D. = (lf2)cS"Ch'}(O,

2449

where b. is a constant that may be shown from (16) to produce an axial rigid body
displacement and is thus discarded. The boundary condition (58)., the conservation property
(22), and the relation ,,-I = I-vcoming from (9) imply

and the well-known governing differential equation of classical shell theory,

(64).

Thus,

4
G = C~('}+(lf2).sCh))(C)(I-p2}+(I-vTT)Co(Op,

•F= C.(C}-(lf2)(1 +VTT}Co(C)(3p-p).

Finally, substituting (61)0.2.• into (56h and integrating, I get

and substituting this expression along with (61}t>-2 into (55), and integrating, I get

F= C6(C) +D6((}p+ (lj2),,[B6 (C)

- ({-vn )Cl (O}'pZ -(lf6)aKC~')(')p3 +(lf40)YK(1 +vTT)Co(C)(IOp) -p'). (60)6

The boundary condition (57)6 implies

where b6 is a constant that may be shown from (16) to produce an axial rigid body
displacement and is thus discarded. The boundary condition (58l6. the conservation property
(22), and the relation ,e I = I - vimply

Thus,

Two of the four independent homogeneous solutions of (64). and (64), grow as
, .... CXj and must be discarded. To determine the conditions that the remaining solutions
must satisfy at' =0, [ tum to the stresses and displacements given by (14}-(17) which, in
view of (54) and (61)0.2.•., and with C(O = CO(O+~1/2C2(O, take the forms
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ra

R
z = (1 +vrr))[3q,)p+ (1/10)e l

/
2YICCo(O(3p-5p 3) +O(e)], (65)

ao

H 1;fR"::2
ao

= - [C(3)mp+ vC'(O -(1/2)e"2<7/I5)(1 +vrr)Co(C)(3p- p3)+O(e)],

(67)

2R~' = C"(O+O(e).
ao

(68)

Obviously, unless the prescribed tractions and/or displacements at the end of the tube
have radial variations that match the right-hand sides of (65)-(68), the shell-like solutions
are incomplete and must be supplemented by boundary layer solutions with the property
that derivatives with respect to , are large. I now consider such solutions.

4. THE WIDE BOUNDARY·LAYER SOLUTION

Guided by the analysis in Horgan and Simmonds (1991), I let

so that the governing differential equations (10) and (II) take the form

while the traction-free conditions on the sides of the tube, (20) and (21), read

M.p(± I,a,e) = 0,

Substituting the formal asymptotic expansions

o 1/4 I
M(p, a, e) = M(p, a) +e M(p, a) +.. "

o 1
N(p,a,e) = N(p,a)+e I/4 N(p,a)+···,

o 1
L(a,e) = L(a)+e I/4 L(a)+· ..,

(70)

(71)

(72)

(73)

(74)

into (70)-(73), I obtain an infinite sequence of boundary-value problems, the first of which
is

o 0 0 0 0
M. pp = N.p<a, N.pp = -M.p<a-(fJ/YIC)L",

o 0 0
M. p(± I,a) = 0, M.3 (± I, a) = yL(a).
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.t .t.t f' d' hFurthermore, if I set M = Me +MO, the sum 0 functIons even an odd lD p, then t e
boundary conditon (73) implies

(79)0,1

o
Eliminating N between (75)0 and (76)0' I obtain

( 0) (0) _ • . 0())M,p ,pp + M,p ,'2 - - (b/yK)L .

This equation admits solutions of the form

o 0
M,p = e-A'[A(l) cos.tp+B(.t) sin .tp] - (b/YK)L'(oc),

where A and B are unknown constants. Further, I require that

(81)0

9U > 0 and
, 0

11m L'(a.) = 0
'-00

to ensure decay away from the end of the tube.
The boundary condition (77)0 implies that

o
L(a.) = -(YK/b.t)A(.t)cos.te- A

•

and

sin.t = o.

(82)

(83)

With A = a sec.t and B = -knZ.I:, k = 1,2, ... , it follows from (81)0' (82) and (83) that

where E is an unknown function. From (79)0 fotlows

tan.t = .t. (85)

The positive roots of this equation, which may be found in Table 4. 19 of Abramowitz and
Stegun (1964), [ denote by l:, k = 1,2, ... , the "0" standing for odd fotlowing the notation
of Horgan and Simmonds (1991); I denote the associated values of a in (84)0 by 8.1:. It now
fotlows from the remaining face boundary condition (78)0 that

(86)

and hence that

where

0: = csc.t: sin .t: p - p and 0: = cos knp - ( - 1).1:

(87)

(88,89)

are the same asymptotic eigenfunctions encountered by Horgan and Simmonds (1991)
in their analysis of transversely isotropic elastic strips. These eigenfunctions satisfy the
orthogonality condition
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(90)

where {At. ()t} stands for either of the eigenpairs {A:, O:} or {k1r, lft} . For future use, note
that

I shall call :it and bt wide Fourier coefficients.
From (78)0 and (87)0,

00 0

L
o = _ y,,~ake-.l:·

J ~ At .

o
From (75)0' (76)0' (92) and the requirement that N ..... 0 as 0: ..... 00,

N= f [:it e-.l:·(I/At -csdt cos Atp) +bk e- h
• sink1rp],

1

(91)

(92)

(93)0

where an unknown function of integration that depends on (X only has been absorbed into
2
L(o:). Note that

By (70)-(74) and (79)0" it is obvious that the solutions for I, Mand Iv are identicalo 0 • 0
in form to those for L, M and N, save that Os are replaced everywhere by Is,

In general, linear combinations of the interior and wide boundary-layer solutions are
not sufficient to meet the various combinations of end conditions encountered in Cases
A-D discussed in the Introduction. I now augment these solutions.

S. THE NARROW BOUNDARY·LAYER SOLUTION

Again guided by the analysis in Horgan and Simmonds (1991), I let

(95)

Then the differential equations (10) and (II) and the traction-free conditions (20) and (21)
take the forms

el/
2cS( ep) Q__ P + -'-P + P --...:.!L

y" .PP I +ep ~, - I +ep' (96)

(97)

P,p(± 1,/3,8) =0,

Substituting the expansions

(I ±e)2p~(±1,/3,e) = e(l-vn)Q(± 1,/3,e). (98,99)



Analysis of end effects

o I
P(p,{J,t) = P(p,fJ)+t I14p(p,fJ)+"',

o I
Q(p,{J,t) =Q(p,fJ)+t I14Q(p,{J)+""

2453

(100)

into (96)-(99), [obtain an infinite sequence of boundary-value problems, the first of which
IS

o 0 0 0
p.PP =Q.PP' Q.PP = - p.PP ,

o 0
p.p (± I,{J) = O. p.p(± I,{J) = O.

The differential equations (101)0 and (102)0 admit decaying solutions either of the
form

(105)0

or else of the form

(106)0

where c, d and A. are unknown constants and Jt). > O. These solutions can be made to satisfy
either boundary conditions (103)0 or (104)0' but not both. Choosing the latter, I get solutions
of the form

(108)0

where ~k and dk are unknown constants. (Note that the condition fJt). > 0 excludes the.

solution P = ~o, Q = 0.) [ shall call ~k and dk narrow Fourier coefficients.

6. THE SINUOUS BOUNDARY·LAYER SOLUTION

To obtain another type of narrow boundary-layer solution that does satisfy both of
the traction-free conditions on the sides of the tube, I note, just as Horgan and Simmonds.
(1991) showed for a strip weak in shear, that there exist sinuous solutions Yand Z for the
tube that decay rapidly in the axial direction and oscillate even faster in the radial direction.
I use these to supplement the solutions discussed in the preceding Section by setting

(109)

and

(110)

where

(Ill)

As P and Q satisfy the differential equations (96) and (97), it follows from (10), (1 I), (95)
and (109) that Yand Z satisfy

$AS 29:20-C
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£312 Y yIC£ 1/2 Y YICZ
Y + ,If + ." _ ,If'

."" 1+£312" lJ -lJ(I+£312,,)'

(

3/2Z )& ." 1/2 312(l- vrr) Z,lfll - 1+£3/2" +£ yZ.,/I = -y(1 +£ ,,) y',,/I'

( 112)

(113)

In view of (95) and (109)-( III). the traction-free conditions (20) and (21) take the form

(114)

(I ±e)2[p.,( ±I. (J. e) +f: 112 Y.,( ±e- 1/2. (J. e») = e(1- Vrr )[Q( ±I. (J. e)

+eI12Z(±e-1/2.{J.e»). (115)

Inserting the expansions

o 1
Y(". (J. f:) = y(". (J) +e1/4 Y(". (J) +.. '.

o I
Z(".{J.e) = Z('1.{J)+e I/4 Z('1.{J)+ .. ·• (116)

into (I 12)-( I 15). I obtain an infinite sequence of boundary-value problems. the first of
which reads

o 0

(l-vrr)Z."" = -YY.II/l.

o
p.f1(± I.{J) = O. (120)0

To obtain the right-hand side of (119)0. I have used (107)0 and assumed that term·by-term
differentiation of the infinite series is legitimate.

o 0
To satisfy (t 19)0. the {J-variation of Y must match that of p.p (± I. (J). This leads to

the following decaying solutions of (I 17)0 and (I 18)0:

( 121)0

(122)0

where

(123)

7. ASSEMBLrNG THE PIECES

I now show that each ofthe four sets ofend conditions labelled A-D in the Introduction
and recast as eqns (45)-(52) in Section 2 can be satisfied by assuming that
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CI> = F(p. C. e) +eM(p.~. &) +e3/2P(p, {J. e) +e% Y(", {J, e)

o 1/' %
= F(O+e -F«()

:c ..+4 " It It

+& L [&,,/4 F (p, () +&,,/4M(p.~)+&li2+1f/4P(p, {J) +&1 +lf14 y(". {J)].
o

x = G(p, C. e)+#e3/4[L«(X,e)+&11 2 N(p, (x. e)]

+J(l-vTT)(y/c5)&714[Q(p,{J,e)+e Il2 Z(",{J,e)] = G(O+e ll%(;«)

t::J:. 0 ~ { If+ 4 t::J:. r+ I If
+vyIKe314L«(X)+eL &,,/4 G (p,0+vYIK&,,14 L (~)+eI14N(p,~)]

o
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(124)

(125)

Case A (0': and t prescribed) : By the last lines of (25) and (31) and (124). the edge condition
(45) implies that

o A 2
F(O) = Cl>o. F(O) = O.

4 0 A.

F(p.O) +M(p, 0) = Cl>4 +So(p).

By the second line of (25). the first line of (31), and by (61 )0.%.4 and (87)0. the above three
equations reduce to

C 2(0) = 0,

C4(0) - (1/2)(1 +V'rr) Co(0)(3p - p3) +f {~k[m(p)+ (),n- %(Y%Klc5)] +bkin(p)}
I

Evaluating (127)4 at p = ± I, adding the resulting expressions. noting (29) and (30) and,
from (88) and (89), that fPt( ± I) = in (± I) =O. I get

(128)

Substitution of this expression back into (127)4 and use of (127)0 yields

(129)

The wide Fourier coefficients ~k and bk may be found easily from (129) with the aid of
the orthogonality condition (90). Note: because the right-hand side of (129) vanishes at
p = ± I, the infinite series on the left will converge uniformly so long as so(p) is piecewise
differentiable on [-I. IJ. [See the discussion of a theorem in Courant and Hilbert (1953,
p. 360) in Appendix B of Horgan and Simmonds (1991 ).]

Even though the computation of C4(0) takes me beyond the scope of this paper, I note
that the infinite series in (128) may be expressed in closed form. To do so, I multiply both
sides of (129) first by p and then by p3 and integrate with respect to p from -I to I. Taking
note of (29). (30) and (91), I obtain



2456

and hence

J. G. SIMMONDS

(130)

(131)

Turning next to the edge condition (46), I note by (124) and the last line of (38) that

o A 2
£'(0) = <1»0{' £'(0) =0,

o 0
J(l-vn)(c5//C)M.~(p,0)+yP.6(p,0) = O.

By the first line of (38), (61)0.2 and (107)0' I obtain

(132h

(135h

(135)0

2(1 +vn)Co(O) = qQ' C 2(0) = 0, (1330),(133 2)

~ 0 0
L~k(k- 1)1tcos(k- !)1tp+dkk1t sin k1tp = J(I- vn)(c5/y2/C)M.3 (p,O). (133h
I

Observe that in Case A :

(a) C2(0) = Cz(O) = 0 means that the computation of the first asymptotic correction
to classical shell theory does not depend on the boundary-layer solutions.

o
(b) the lowest-order contribution to <I» in the wide boundary layer, M(p, a:), is deter-

mined first-in terms of the wide Fourier coefficients 8k and b.-from (129). With
this solution in hand, the lowest-order contribution to <I» in the narrow boundary

layer, pep, P), is determined-in terms of the narrow Fourier coefficients ~k and
o
dk-from (133h

Case B (a: and u, prescribed): The edge condition (47) of Case B is identical to the
edge condition (45) of Case A; thus CoCO) and C 2(0) are given by (127)0.2' By (40), (41),
(69), (95), (124) and (125), the end condition (48) implies that

o _ 2 0 I

G'(O) = <1 0 , G'(O)+(l-V)L'(O) = 0, L'(O) = 0, (134)g,(134h,(l34h

.. 2 0 0 A.

G.,(p,O)+(l-ti)L'(0)+(l-ti)N.2 (p,O)+(y/c5)Q,/J(p,O) =a.+no(p), (134).

where I have used (9) to set /C- I = (I - ti). Inserting (59)0.2 and (92) into (134)0.2 and noting
(130), I get

C~(O) = 60 ,

Ci(O) = -(Y/15)~8k = (l/4)(Y/c5{fl pJSo(P)dP-(3/5)mo].

To satisfy (134)" I assume that £(a:) == 0 [and hence that M(a:) == N(a.) == 0]. To satisfy
(134)., which allows me to determine the narrow Fourier coefficients, I note from (87)0 and

o 0 0 0
(93)0 that N.~ = M,p and from (107)0 and (108)0 that Q.6 = - p.P' Then inserting (61)4 into
(134)4 and noting (64)4' (127)0 and (135)0, I obtain
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C:(O) - (3/4)(1-V)mo(0)(I- p2) +(l-vlT)!op

+(I-V)[l'(O)+M,p(p,O)]-(y/a)P,p(p,O) =!4+00(P). (136)

I now integrate both sides of this expression with respect to p from - I to I. Noting from
(53) that

(137)

o 0
from (87)0 that M(p, 0)1 ~ I = 0, and from (107)0 that P( ± 1,0) = 0, I get

(138)

Finally, introducing (138) back into (136), integrating the resulting expression with respect
to p from -I to p, and noting (129), I obtain

P(p,O) = f [~t cos (k- !)rtp +dt sin k1tp] = - (b/y) {fp [(I - V)(p- p)so(ji)
I -I

+00(1)] dp+ (v/2)mo(l + p)+ (1/2)(1- VlT)~o(l_p2)}. (139)

The orthogonality of cos (k - !>rtp and sin k1tp on the interval - I ~ p ~ I immediately

yields the Fourier coefficients ~t and dt • Because the right-hand side of (139) vanishes at
p = ± I, the infinite series on the left will converge uniformly provided that
Oo(p) = wo(p) +so(p) is piecewise continuous.

Observe that in Case B:

(a) (135h implies Ci(O) can be expressed directly in terms of the edge data because
00

L~t can be summed in closed form. As mentioned in the Introduction, Gregory
I

(in a private communication) has suggested that this result, and an analogous one
in case C, can also be obtained with the aid of the Betti Reciprocity Principle.

(b) as in Case A, the lowest-order contribution to cJ) in the wide boundary layer,

M(p, (X), is determined first (in terms of the Fourier coefficients &t and gt) from
o

(129). The lowest-order contribution to ell in the narrow boundary-layer, P(p, P),
is determined independently (in terms of the Fourier coefficients ~t and dt ) from
(139).

Case C (f and u: prescribed): First observe that, because the edge condition (49) of
case C is identical to (46) of Case A, 2(1 +vrr)Co(O) = t/o and C'1(O) = 0 as in (133)0,2'

Next, the edge condition (50) yields, by the last line of (38), (43), (124) and (125),

4 • •
G,p(p, O) = J'I'oP+(I-vlT)<1>oc,

#N,p(p, O) = ~Oo(p),

G,p(p,O)+#N,p(p,O) = o.

In view of the first line of (38) and (61)4. eqn (140)4 implies (133)0 and

(140),

(140)6
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(3) -Co (0) = -'1'0' (141 )0

o
Noting from (93}o and (85) that N( -1,0) = 0, I integrate both sides of (140)5 from

-I to p twice and use (94)0 and the standard iterated integral formula to obtain

where B': and tn are given by (88) and (89).
6 ~I I

Finally, note that (140)6 implies that G(p,O)+ ...tY/KN(p,O) = constant. As N(p,a.)
o .

has the same form as N(p, a.), It follows from (93}o and (94)0 that

(143)

Thus, (6\)6 and (133)0.2 imply that

Integrating both sides of (144) from p == - I to p = 1 and noting (143). I conclude that

(145h

Substitution of this expression back into (144) yields

(146)

from which the wide Fourier coefficients ~k and hk can be determined.
Observe that in Case C;

(a) the edge conditions (133) 2 and (145) 2 needed to compute the first interior correction
to classical shell theory, are expressible directly in terms of the edge datum 40
the same datum used in classical shell theory.

o 0
(b) the lowest-order contributions to the wide boundary layer, M(p, a.) and N(p, a.),

are determined first from (142}o, via the Fourier coefficients ~k and bk • Then the
o 0

lowest-order contributions to the narrow boundary layer, P(p, fJ) and Q(p, fJ),

are determined from (133h, via the Fourier coefficients ~k and ~k'

Case D (u, and u: prescribed): By (42)-(44), (124) and (125) the edge condition (51)
implies

4 0_
G.p(p,O)-(I-vlT+vc5)F'(O) = c5(Ao+'I'op),

#N.p(p.O) = c5Uo(p).

G.p(p, 0) +.j:;j;cN.p(p, 0) - (I - VlT +VC5»);-'(O) = fJA 2 ,

while (69), (95) and the edge condition (32) imply

cho) == Ao,

(,'(0)+(1-0L'(0) = 0,

(147)4

(147)5

(147)6

(148)0
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1.'(0) = 0
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(148h

• 2 0 o. ~.

G,;(p, 0)+ (1- V)L'(O) - vM,,(p, 0) - (y/lJ)p.,(p, 0) -F,,(p, 0) = £\. + Wo(p),

(148).

where, in (148).1 have set M" = N.2 and Q./I = - p." as 1 did in case B.
Substituting (61)0.• into (147)4,1 obtain (141)0 and

-vCo(O) = Ao• (149)0

This last relation detennines Ao, not Co(O)-see the remark after eqn (23). As (147h is
identical to eqn (l40h of case C, it is equivalent to (142)0 which detennines the lowest~

order approximation to the wide boundary layer solution via the Fourier coefficients 8k

and bk •

Turning to (148)6' 1 integrate with respect to p and use (61h.6 to replace Gand t,.
Evaluating the resulting expression at P± I, I conclude that

and

-vC2(0) = A 2 (150h

(1/2)lJC~l}(0)(I-p2) -(1/8)')'(1 + vn)Co(0)(5-p2)(I-p2)+~Jv.p(p, 0) =o.
(151h

Integrating (151h from p = -I to P = I and noting (143), I obtain

C~l)(O) = (6/5)(')'/lJ)(1 + Vn)Co(O), (152h

where, at this point. CoCO) is unknown. Note that (150h detennines A 2, not Cl(O).
The next group of expanded edge conditions, (149)0.2,3, is identical to eqns (134)0.2.3

of Section B. Hence, (135)0,2 hold, but without the extreme right-hand side of (135h, i.e.
CoCO) = !o and

ao

C"2(O) = -(yllJ) 2:8kt
I

(153h

where 8k may be detennined in terms of Oo(p) from (143)0. Unfortunately, a simple, c1osed~
ao

fonn expression for 2: Zk does not appear possible.
1

At this point ( have found edge conditions. (152h and (153)h, for the first interior
correction to classical shell theory and need only a condition on CoCO). To find this, ( first
substitute (61)0 into (149)0 and obtain, as in Case B,

CoCO) =!o. (153)0

The next expanded edge condition, (l49h can be shown to lead to (153h, so no new
infonnation is obtained; (149h implies ,that L(p) == M(p, IX) == N(p, IX) == o.

To reduce (149)4' note that (61)4 and the governing differntial equation of classical
shell theory, (64)., imply that



2460 J. G. SIMMONDS

4 ,
G.;(P.O) = C:(O) - (3/2)(1 - V)(I + VrdCo(O)(1 - p.) + (1- vrr)C~(O)p. (155)

Substituting these expressions into (149)4 and noting (153)0. I obtain

C:(O) + (3/2)v(l +vrr)Co(0)(I- p 2)+(I-V)I,(0)

o 0 ~. ~

- vM,p(p, 0) - (y/b)P,p(p. 0) = .14+ Wo(p) - (I - Vrr ).1oP. (156)

Integrating this expression from p = - I to P = I and noting (19), I get

~ 2
C~(O) = .1 4 -(I-V)L'(0)-v(1 +vrr)Co(O). ( 157)

the analogue of eqn (139) of Case B. Finally. introducing (157) back into (156) and
integrating the resulting expression from - I to p. I obtain

0'" 0
P(p,O) =L [gk cos (k - !)1tP +dksin k1tp]

I

= -(b/y){f, Wo(p)dp+v[Nf(p.O)-Nf( -1.0)]

+ (1/2)[( 1- Vrr )£io - v( 1+ vrdCo (O)p]( 1-pZ)}. (158)

From (134)0 come the wide Fourier coefl1cients ~k and hk and hence M. Furthermore. as
C~(O) = £io and C\?)(O) = - 'fIo. ( can solve the classical shell equation. (64)4. subject to
these end conditions to find Co(O) and C~(O). Thus. the right-hand sides of (152) Z and (158)

become known and from the latter equation follow the wide Fourier coefficients gk and
o
dk •

Observe that in Case 0 :

(a) although CVI(O) can be expressed (ultimately) in terms of the edge data £io and <1>0
of classical shell theory [via (I52)z, after the differential equation of classical shell
theory has been solved and C~(O) computed]. the expression for C'2(0) given by
(153)z requires an explicit solution of the wide boundary-layer equations. This
jibes with what Gregory and Wan (1992) found for the isotropic tube.

(b) as in all other cases, the wide boundary-layer contribution is determined first [via
(143)0] and the narrow boundary-layer contribution next [via (158)].

8. SUMMARY

The function Co(O satisfies the differential equation of classical shell theory. (64)4.
repeated here as

(159)

The lowest-order interior correction to classical shell theory is represented by the function
Czm which satisfies (64)6' repeated here as

(160)

The edge conditions satisfied by Co(O and C 2mare as follows.



Incase A:

In Case B:

Analysis ofend effects

2(1 +VlT)Co(O) = 40' C;(O) = o.
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(161)

(162)

(163)

In Case c:

In Case 0:

2(1 +VlT)Co(O) = 40' C;(O) = 0,

C~))(O) = - '"0' C~3)(0) = (3/5)("I/~)ijo.

00

C~(O) = 60' Ci(O) = -("II~) ~Z.\:t Zk from (142)0'
I

(165)

(166)

(167)

(168)
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